Ultrasound Speckle Reduction via Super Resolution and Nonlinear Diffusion

نویسندگان

  • Bo Wang
  • Tian Cao
  • Yuguo Dai
  • Dong C. Liu
چکیده

Recently, some diffusion-based filtering methods have been developed such as anisotropic diffusion (AD) or nonlinear diffusion (ND), which can reduce the speckle noise, at the same time, preserve and enhance the edge/borders in ultrasound image. However, because of the granular pattern of speckle, it is quite difficult to reduce speckle exactly through diffusion-based methods only. In this paper, we propose a super resolution (SR) based ND method. We firstly reduce and compound speckle noise in a sequence of ultrasound images by using a fast SR method for ultrasound image. After this process, ultrasound speckle is much smaller, and the edge and structure are much clearer as complementary information of different images was used. To reduce the noise of the SR improved image, we use a local coherence based ND method. In the end, experimental results of the proposed method are compared with some other AD methods to demonstrate its effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Diffusion based on Bayesian Estimator in Laplacian Pyramid Domain for Ultrasonic Speckle Reduction

Laplacian pyramid based nonlinear diffusion (LPND) method is proposed for speckle noise reduction in medical ultrasound imaging. In this method, speckle is removed by nonlinear diffusion filtering of bandpass ultrasound images in Laplacian pyramid domain. For nonlinear diffusion in each pyramid layer, a Bayesian threshold is automatically determined by a variation of robust median estimator. Th...

متن کامل

Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performanc...

متن کامل

Optimized GPU Framework for Semi-implicit AOS Scheme Based Speckle Reducing Nonlinear Diffusion

Ultrasound image quality is degraded because of the presence of speckle, which causes loss of image contrast resolution and makes the detection of small features difficult. The traditional nonlinear diffusion filtering of speckle reduction with explicit schemes can achieve desirable results, but they are only stable for very small time steps. Semi-implicit additive operator splitting (AOS) sche...

متن کامل

Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic c...

متن کامل

An Efficient Filtering Approach for Speckle Reduction in Ultrasound Images

Ultrasound (US) imaging is a valuable imaging technique for clinical diagnosis. It is noninvasive in nature and imaging the internal structure of the body to identify the probabilistic diseases or, abnormalities in tissues behavior. However, inherent response of speckle noise in US images limit the fine and edge details which affect the contrast resolution. This makes clinical diagnosis more di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009